
Graphs look at clusters of varying sizes 
centered at active locations in the cortex-
(third stage) as the sparsity of the con-
nection between the second and third 
stage is varied. (First graph)Clusters are 
unique if the set of odors that evoke a re-
spone in the cluster are non-overlapping. 
Plot shows that for a given neighborhood 
size a specific value of sparsity maximizes 
the no. of unique clusters. Second plot 
shows the number of unique clusters vs. 
total activity for different values of sparsi-
ty. For smaller values of sparsity the no. of 
unique clusters grows faster with the 
total activity
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• Natural odors, even complex ones, are composed 
of a small fraction of the possible number of vola-
tile molecules and hence are "k-sparse" in chemical 
space.
• Olfactory sensing requires identi�cation and seg-
mentation of varying and novel complex odors 
against a highly variable  background

Mixtures can be decoded from small subsets
• We use measured ORN responses from[2]
• Calculate mixture responses from ORN responses as-
suming linear model
• Model second stage responses with divisive no[1]

• Decorrelation and equalization improves performance 
in second stage by orders of magnitude

Computational model can generate sparse and disor-
dered representations 
• Transformation at the second stage modeled as a divisive nor-
malization [1] 
• Third stage is modeled by a  mixed population of excitatory and 
inhibitory model neurons with long range excitatory connections 
and local inhibition[3,4].

 • Parameters chosen to produce  sparse responses

Spatial  disorder of connections improves odor 
separation even for small subsets
• Neurons in the second stage  preferentially project to 
local  regions (of radius R) in the third stage (of size L)

• Total number of connections between the second and 
third stages kept constant

 •  At all values of R/L, odors are better separated in the 
random model

• Random linear projections e�ciently produce 
low-dimensional representations of k-sparse data 
in a high dimensional input space
• This scheme is universal and works for both fa-
miliar and novel inputs. Sensing does not depend 
on exact stimulus statistics and works for a variety 
of other low-dimensional signal models

• Olfactory Receptor Neurons (ORNs) have dif-
fuse responses where each receptor responds 
to many odors, and each odor stimulates many 
receptors.
• ORNs of a given type converge to the same 
structure(glomerulus) in the next stage of pro-
cessing (bulb/antennal lobe for vertebrates/in-
vertebrates)
• The responses in the second stage are 
gain-normalized and more decorrelated than 
ORN responses
• The projections from the olfactory bulb to the 
piriform cortex lack any discernible spatial 
order, and are observed to be sparse
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 Hypothesis: The di�use sensing by  the ORNs and 
subsequent expansive random projections to the piriform   cortex 
exist to exploit the inherently low dimensional structure of olfactory 
stimuli to produce compact, �exible representations of odors.

Decoding Mixtures from Neural
Responses

Model Olfactory Pathway Role of Spatial Randomness

Sparsity and Odor Representation in Small Subsets

Natural odors are sparse in 
chemotopic space

Random projections provide a com-
pact representation of sparse signals Figure shows average number of 

odors that evoke an 
above-threshold respone (blue) 
in a given small cortical patch  
and the average number of 
unique odors that evoke a re-
sponse in some patch(green), as 
the sparsity of connections be-
tween the second and third 
stages is varied. The patches are 
contiguous,  non-overlapping 
and cover ~1% of the cortex. 
Random connectivity gives 
good coverage of odors over all 
patches while keeping the aver-
age number of odors per patch 
low

• Olfactory system might utilize the computational power of randomness both in sensing and in 
subsequent transformations to provide a robust and flexible representation
• Diffuseness in sensing provides a compact representation of sparse high dimensional signals
• Disorder in the subsequent projections provides a flexible representation where small subsets of 
neurons can efficiently store information about complex odors
• We have built a model of the olfactory pathway that allows us to investigate the role of various cir-
cuit elements in shaping this representation

Odor coverage by small, non-overlapping  clusters Representation of odors in clusters centered at active sites

 • Diffuseness of olfactory sensing leads to a compact representation of sparse high dimen-
sional signals

 •Randomness in the subsequent projections provides a representation where: 
(a) small subsets of neurons store information about complex odors,
(b) noise and finite bandwidth limit the capacity for any small subset,
(c) different subsets of cortical neurons will have low overlap in the odors they represents, 
but collectively provide a large capacity.
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Coverage by localized read-outs

Operating point that gives 
good coverage of odors 
while keeping the number 
of odors per read-out low.
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