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EXPERIMENTAL METHODS

OVERVIEW  NETWORK INTERACTIONS ADAPT DURING STIMULUS PRESENTATION

ADAPTATION SHAPES SYNERGY IN SYNCHRONY

SUMMARY

TIME-DEPENDENT MAXENT MODEL
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Recent work predicts that population-level adaptation should occur in response 
to stimulus variations [1]. We test this prediction using simultaneous recordings 
from populations of retinal ganglion cells [2] and a new extension to the maxi-
mum entropy framework, time-dependent maximum entropy (TDME) [3].  

We find that:

 network interactions change during natural stimulus presentation

 adaptation shapes the relationship between synergy and redundancy while  
 maintaining fixed information per pattern

 adaptation effects are stronger in more synchronous patterns where many   
 neurons fire simultaneously

Our results suggest that adaptation occurs not only on the single-neuron level, 
but also on the population level, to adapt the vocabulary of activity patterns in 
response to stimulus variations.
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σi (t) = 1 neuron i �red in time bin t
0 neuron i was silent in time bin t

hi (t) time-dependent bias to �re

spike trains σi(t) are discretized into time bins of width Δt = 20ms  

σi (t) time-dependent �ring rate

σi average �ring rate 

σi σj covariance in spike trains

the joint probability of binary �ring patterns P{σ} is well-approximated by:

model parameters are chosen to exactly reproduce observables of data

model parameters: observables:
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We use a new approach (TDME) to construct the time-dependent 
distribution of activity patterns in neural populations.  This approach 
enables us to identify the information content of synergistic patterns:

     we find that synergistic patterns contribute a significant 
     fraction of the information conveyed by the population

Within this framework, we developed a method for isolating 
the role of network interactions in shaping population activity:

    we find that network adaptation shapes the relationship between 
    the synergy and redundancy of synchronous firing patterns while 
    maintaining fixed average information per pattern

Preliminary results suggest an important role for population silence:

    network interactions increase the information of synchronous patterns 
           in the presence silence and could increase information per nonsilence 
         
Together, these results suggest that network adaptation shapes
population-level activity in response to stimulus variations

single-cell biases to �re ( hi ) largely capture stimulus-driven correlations, 
while couplings ( Jij ) largely capture intrinsic circuit correlations

MODEL COMPARISONS

OUTLOOK

synergistic patterns account for a large fraction of
information:

ΔIσ (t) = Iσ (t) − Σ Iσi
 (t) 

i

we identify synergistic and redundant occurrences of
a compound pattern σ by computing ΔIσ 

(t) [4]:

synergistic patterns are frequent in the response:

 Σ
{σ}

dtP(σ)
0

Τ

Τ

1
Iσ (t where ΔIσ > 0)fsyn =  Σ

{σ}

dtP(σ)
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ΔIσ (t)  =    Iσ = [101...0] (t)     −     [ Iσ1= 1 (t) + Iσ2= 0 (t) ... + Iσ10= 0 (t) ] 
σ = [1011000000]:e.g.

> 0     synergistic occurrence at t
< 0     redundant occurrence at t

SYNERGY IN COMPOUND PATTERNS SYNERGY, REDUNDANCY, AND PATTERN INFORMATION

I (bits) 

fsyn =Isyn / I  

brush water leaves �sh �ow
.196 .0498 .255 .267 .468
.321 .112 .399 .372 .649
.611 .444 .640 .718 .722

natural movie stimuli

Isyn (bits) 

b).  adaptation shapes δ 
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a). biases to �re hi are highly-
correlated between models

b). couplings Jij are much stronger in the original versus 
shu�ed models and change from early to late stages 
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adaptation shapes the relative di�erence  δσ = Sσ  − Rσ  between synergistic 
(Sσ ) and redundant (Rσ) occurrences of each pattern σ:

early stage late stageearly stage late stage
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a). δ relates to pattern info
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  adapted model: 
       decreases δ in 
       early stage but 
       increases δ in 
       late stage as
       compared to
       �xed model

       more strongly
       shapes δ in 
       synchronous
       �ring patterns
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network interactions increase symbol information in silence [4]:

I([110])−I([11]) I([1100])−I([11]) I([1100000000])−I([11])

INFORMATION IN SILENCE

e.g.  gain in    Iσ with silence for two-spike pattern σ = [11]:
1 silence 2 silences 8 silences

...

 synchronous patterns
 are more informative
 in the presence of  
 silent cells

 the gain in infomation 
 increases more rapidly 
 for more synchronous
 symbols

the shu�ed model (in 
which circuit correlations 
are destroyed; inset) does
not capture this e�ect

this suggests that network-
level adaptation shapes 
information in silence 
and plays an increasingly 
important role as population 
sizes increase 

Many thanks to John Briguglio for useful discussions

Time-dependent maximum entropy (TDME) can separate true 
network interactions from stimulus-induced apparent interactions

With TDME, one can approximate the information I ({σ}; t) 
that the entire population carries about the stimulus  

to check that TDME separates stimulus-driven from
intrinsic network interactions, we compare models 
inferred with and without repeat shu�ing:

to examine adaptation during stimulus presentation,
we infer couplings under two conditions:

MODEL CONSTRUCTIONS

stimulus switch

time

“adapted” couplings
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original model: captures noise 
and stimulus-driven correlations 

shu�ed model: captures 
stimulus-driven correlations 

sum of information values conveyed
by individual pattern components 

information conveyed
by pattern as a whole

information conveyed by a single pattern σ 
at time t : 

I ({σ}; t) =Σ
{σ}

P(  σ  | t  )
P(σ)

dt Iσ(t)
P( σ  | t  )

P(σ)
log2 P(σ)

Τ

1

0

Τ

Iσ(t) =

information conveyed by the ensemble of 
patterns {σ} over the stimulus duration: 
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c). adaptation-driven changes in δ  have the e�ect of maintaining a �xed 
average pattern information (an e�ect not driven by gross changes in P(σ)) 
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occurs in
6 of 85
repeats

occurs in
1 of 85
repeats

time (Δt = 20ms) 16s0s

we compute ΔIσ(t) for every pattern σ
at every time bin t
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dt
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(ΔIσ (t ) < 0)dt

0

Τ

Τ

1
(ΔIσ (t ) > 0)δσ =  = Sσ − Rσ

we compute the information that {σ} encodes about the stimulus

early stage late stagefull durationearly stage

late stage

RETINAL RECORDINGS

NATURAL MOVIE STIMULI

recordings were performed on tiger salamander retinae 
using a rectangular 252 multi-electrode array with 30μm 
spacing and 10kHz sampling rate per channel [2]   

waveforms were sorted using custom spike-sorting 
algorithms (10 well-sorted cells were selected for the 
subsequent analyses presented here)

five randomly interleaved natural movies
representing a variety of natural conditions

each movie lasted a total duration of 20s
and was repeated 80-90 times

waterbrush leaves fish optic flow
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network adaptation might increase information per nonsilence
at a population level:

late (shu�ed)

brush water leaves �sh �ow
1.90 (1.91) 2.41 (2.40) 3.15 (3.13) 2.99 (2.99)

2.19 (2.20) 2.76 (2.75) 4.39 (4.35) 3.27 (3.22)
-.42 -.52 +.34 +1.24 +.28

early (shu�ed) 2.59 (2.61)
1.39 (1.47)

late - early
I ({σ}; t )

1−P ([0000000000])

natural movie stimuli

info/nonsilence (bits)

I ({σ}; t)Isyn ({σ}; t)

results are consistent across stimuli


