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Abstract

The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to
underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to
which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity
is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals.
Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these
structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and
task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions
of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of
anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-
dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to
define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of
separation between states is related to both general measures of behavioral performance and relative differences in task-
specific measures of attention versus memory performance. These findings suggest that the observed separation between
cognitive states reflects underlying organizational principles of human brain structure and function.
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Introduction

The brain is continually active, whether in a state of rest or

during the performance of task-directed function. Despite predic-

tions that resting-state neural activity would be noisy and

unconstrained, the human brain has been shown to exhibit

patterns of correlated neural activity even in the absence of any

task-directed function [1,2]. Such correlations in ‘‘default mode’’

activity, which have been consistently identified within a diffuse

network of brain regions [3–6], are thought to support the

functional organization of the brain [2].

Signatures of task-related function have similarly been identified

in task-free states based on anticorrelations in spontaneous neural

activity between default mode and task-related brain regions [7–

10]. Together, these sets of brain regions have widely been

associated with two functional networks, denoted task-positive and

task-negative, composed of regions known to become more (task-

positive) and less (task-negative) active during the task performance

relative to their behavior at rest [7]. Correlations within these

networks have been shown to support attention [11] and memory

[12,13] processes, and disruptions to these networks have been

implicated in neurological disorders [14–17].

While such studies have characterized individual functional

networks within single task domains, recent studies suggest that

interactions between functional networks are important for

shaping attention [18], memory [19], and motor learning

[20,21] performance. Anatomical studies have additionally shown

that structural measures, such as the length and number of white

matter tracts linking brain regions, play important roles in

distinguishing global task-dependent changes in functional corre-
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lations [22]. Together, these findings suggest that anatomy may be

important for shaping task-dependent interactions between

functional networks, and these interactions may in turn be

important for shaping behavior. Such relationships, however, are

not understood. Does functional connectivity between networks

vary systematically across across resting and task-driven cognitive

states? To what extent is such variation differentially supported by

underlying anatomical organization? How do such relationships

between anatomy and function shape behavior?

To address these questions, we examine whether patterns of

anatomical connectivity relate to the task-dependent strength of

correlated neural activity within and between task-positive and

task-negative networks, and we examine the extent to which such

relationships are linked to behavioral differences in attention and

memory performance. Structural and functional connectivity are

estimated in 71 subjects using noninvasive neuroimaging tech-

niques, where functional connectivity is separately estimated in

three cognitive states: (i) at rest, (ii) during an attention task, and

(iii) during a memory task. Behavioral performance is assessed in

the same subjects during both the attention and memory tasks.

In what follows, we uncover task-dependent links between

human brain anatomy, function, and behavior both within

individual subjects and across groups of subjects. We group brain

regions based on their involvement in the task-positive and task-

negative networks defined in [7], and we show that the strength of

anatomical connectivity within versus between these networks

differentially supports strong, task-dependent functional correla-

tions. The space mapped out by the observed structure-function

relationships can be used to quantify a measure of separation

between cognitive states, and we show that individual variability in

this separation is linked to behavioral performance during both

attention and memory tasks. Together, these results reveal that

cognitive states are differentially supported by specific patterns of

anatomical connectivity, and the observed association between

anatomy and function is predictive of behavior.

Methods

Ethics Statement
Informed written consent was obtained from each subject prior to

experimental sessions. All procedures were approved by the

University of California, Santa Barbara Human Subjects Committee.

Network Models of Brain Connectivity
We consider a complex network description of the human brain

in which localized brain regions are represented as nodes, and the

strengths of structural or functional connectivity between brain

regions are represented as weighted, undirected connections

between nodes [23,24].

A set of 600 cortical and subcortical regions roughly equal in

size are chosen by upsampling anatomical regions within the

Automated Anatomical Labeling (AAL) Atlas [25] (Text S1). We

identify a total of 368 regions in our atlas that overlap wholly or

partially with regions in task-positive and task-negative networks

(Text S1), and we refer to the remaining regions as ‘‘other’’

regions. We focus on three of the six possible couplings between

these three region types: couplings between two task-positive

regions (PP), two task-negative regions (NN ), and one task-positive

and one task-negative region (PN). We then compare these

couplings to the remaining set of couplings between task-positive

and other regions (PO), between task-negative and other regions

(NO), and between two other regions (OO). Figure 1a shows a

schematic of possible couplings.

To construct brain networks from this set of regions, we weight

connections between regions by measures of structural and

functional connectivity. Structural connectivity (SC) is obtained

from diffusion tensor imaging (DTI) measurements via a tracto-

graphy algorithm used to identify the number of white matter

streamlines linking two regions [22]. Functional connectivity (FC) is

obtained from functional magnetic resonance imaging (fMRI)

measurements by computing Pearson’s correlations between region-

al mean blood oxygen level dependent (BOLD) time series. FC is

separately estimated (i) at rest (FCR), (ii) during the performance of

an attention task (DFCA), and (iii) during the performance of a

memory task (DFCM ) [26]. As task-based fluctuations in BOLD

signals are small in comparison to resting-state values [27], task-

based FC is computed in deviations DFC~(FC{FCR) from rest

[22]. See Text S1 and [22] for details regarding task design,

connectivity estimates, and methodological considerations.

Each subject is described by a structural and functional brain

network whose connections are weighted by subject-specific values

of SC and FC. Group-level properties can similarly be described

by a ‘‘representative’’ brain network that combines information

across all subjects. We construct two representative networks, one

structural and one functional, by averaging the corresponding sets

of connection weights across subject-specific networks, such that

the representative connection weights correspond to the group

mean values of SC and FC, consistent with previous studies

[22,28]. Note that alternative techniques for constructing group-

based connectivity networks may capture slightly different aspects

of subject-specific network topology [29].

The assessment of group-level properties requires that we

consider the degree to which SC is reliably present across subjects.

While FC is typically non-sparse, SC can be both sparse and

variable across subjects [22,30]. We therefore restrict all subse-

quent analyses to the subset of region pairs that are consistently

linked by one or more white matter streamlines in at least 80% of

subjects. We confirm that the observed structural and functional

properties of the set of thresholded connections are robust to our

specific choice of thresholding values (Text S1).

Results

Couplings between Task-Positive and Task-Negative
Networks Differentiate Cognitive States

Functional correlations within task-positive and task-negative

networks have been separately linked to attention and memory

Author Summary

Human cognitive function is thought to be supported by
patterns of correlated neural activity. While recent work has
shown that such functional correlations are differentially
supported by specific properties of anatomical brain
connectivity, the extent to which brain anatomy shapes
cognition is not understood. In this study, we develop new
network-based approaches for relating anatomical connec-
tivity, correlations in neural activity (functional connectivity),
and behavioral task performance. We use noninvasive
neuroimaging techniques to measure whole-brain connec-
tivity in 71 subjects across three cognitive states: at rest,
during an attention task, and during a memory task. By
associating anatomical and functional connectivity with
known functional brain networks, we show that the relative
strength of inter- versus intra-network connectivity distin-
guishes between resting, attention, and memory states.
When compared across subjects, we further show that the
observed relationship between brain anatomy and function
is predictive of individual differences in attention and
memory task performance.

Structural Constraints on Human Cognitive Function
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processes, but the integrated function of these networks is, as of

yet, unclear. Should we view these networks as distinct modules

that compartmentalize function, or as integrated networks that

couple together in a task-dependent manner to shape cognitive

function?

To address this question, we examine the extent to which

couplings within and between task-positive and task-negative

networks differentially shape task-dependent distributions of

functional connectivity. We first assess the distributions of

resting-, attention-, and memory-state functional connectivity

within the sets of PP, NN, and PN couplings. These distributions

exhibit features that are consistent with known properties of

task-positive and task-negative networks. In the resting state, both

PP and NN couplings exhibit stronger correlations than PN

couplings (inset of Figure 1c), consistent with the definition of task-

positive and task-negative networks based on strong correlations

within each network and anticorrelations between networks [7]

(note that anticorrelations are manifested here as weaker

correlations between PN relative to PP and NN region pairs).

Similarly, in the attention state, PP and NN couplings respectively

exhibit larger increases and decreases in FC relative to the

distribution of PN couplings (Text S1), consistent with known

attention-driven increases and decreases in task-positive versus

task-negative network activity.

Figure 1. Identifying structure-function relationships in task-related networks. (a) In both representative and subject-specific brain
networks, we identify brain regions that belong to the task-positive and task-negative network described in [7], and we label all remaining regions as
‘‘other’’ regions. There are six possible types of couplings between these three types of regions. We focus on three of these couplings: those between
two task-negative regions (NN), between two task-positive regions (PP), and between a task-positive and a task-negative region (PN). These
couplings are highlighted in the axial view of the representative brain network. (b) We compute measures of structural (SC) and functional (FC)
connectivity between each pair of regions by measuring the number of white matter streamlines linking two regions (SC) and the task-dependent
strength of functional correlation between BOLD time series measured within regions (FC). The pie chart shows the decomposition of all structural
connections into those that link two task-positive (nPP), two task-negative (nNN ), one task-positive and one task-negative (nPN ), and all other regions
(n�O~fnPO,nNO,nOOg). (c) We assess variations Dn in these number densities as we bias toward increasingly strong functional correlations. This
relationship is illustrated here for the representative brain network, where variations DnPP , DnNN , and DnPN are shown as a function of the resting-
state threshold tR . This can be understood as computing the change in composition of the pie chart shown in (b) while incrementally biasing toward
strongly-correlated region pairs with functional correlations above the threshold value tR. Inset: complementary cumulative distribution function
(cCDF) of FCR computed for PP, NN , and PN couplings, where the cCDF(FCR) measures the probability of finding FCwFCR for every value of
FCR. The variable threshold tR selects the subset of connections with FCRwtR. (d) The changes in PP, NN , and PN densities can be compactly
represented by comparing the degree of within-network coupling, quantified by the relative change in PP versus NN densities (DnPP{DnNN ), with
the degree of between-network coupling, quantified by the change in PN density (DnPN ). This representation reveals that strong resting-state FC is
supported by strong local coupling within the task-negative network, represented by the increase in NN relative to PP density, and weak coupling
between task-positive and task-negative networks, represented by the decrease in PN density.
doi:10.1371/journal.pcbi.1003591.g001

Structural Constraints on Human Cognitive Function
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Given that strong functional correlations are hypothesized to

support state-dependent cognitive function, we focus our analysis

on the strong values of FC within the leading edges of the resting-,

attention-, and memory-state distributions. To isolate strong

correlations in each cognitive state, we apply a variable threshold

to each distribution of FC. The thresholding process, which selects

connections above a specified threshold value of connectivity

strength, is common to graph theoretic analyses [24] and can be

used to assess network properties at a fixed threshold value (e.g.

[28,31]) or across variations in threshold values (e.g. [30,32,33]).

Here, we apply a threshold to the distribution of FC, and we

examine changes in network connectivity across variations in this

threshold value. The use of a variable threshold enables us to

isolate structural network properties that support increasingly

strong functional correlations.

We characterize changes in network connectivity by examining

the distribution of PP, NN , and PN couplings that support

functional correlations above a variable threshold t. A given

threshold value t� will select the set of region pairs with FCwt�.
Within this set of region pairs, we measure the fractional number

density nab of all structural connections that couple a given pair of

regions a and b, with region labels fa,bg[fP,N,Og. This process

can be viewed as assessing the FC-dependent connectivity of a

weighted structural network in which connections, defined by the

reliable presence of SC in 80% of subjects, are weighted by the

number of fiber tracts linking a given pair of regions. Qualitatively

similar results are achieved by analyzing the connectivity of an

unweighted structural network. However, we find that weighted

networks better distinguish strong FC between different cognitive

states than do unweighted networks, suggesting that both the

presence and degree of structural connectivity play important roles

in supporting strong state-dependent FC (see Text S1 for

comparison of weighted and unweighted network analyses).

We vary the functional threshold t and compute the change

Dn(t) in number density relative to baseline (with baseline

computed in the absence of any threshold). We find that the

relative changes in PP, NN, and PN densities vary systematically

across resting, attention, and memory states. In the resting state,

for example, we find that strongly-correlated region pairs are

supported by a high density of NN connections (positive DnNN )

and a low density of PP connections (negative DnPP) relative to

their baseline values (Figure 1c).

To compare these relationships across cognitive states, we

examine two quantities: the change in PN density (DnPN ) and the

relative changes in PP versus NN densities (DnPP{DnNN ). Both

quantities are evaluated as a function of the task-dependent

thresholds tR, tA, and tM . The quantity DnPN measures the

degree of coupling between task-positive and task-negative

networks, with positive (negative) values of DnPN indicating

increased (decreased) coupling relative to baseline. In comparison,

Figure 2. State-space mapping of structure-function relationships. Density of between-network couplings (DnPN ) versus within-network
couplings (DnPP{DnNN ) are shown as a function of the increasing functional threshold t in the representative brain network for the resting (circular
markers), attention (square markers), and memory (triangular markers) states. Comparison of these network couplings reveals a large degree of
separation between rest, attention, and memory states, with the degree of separation increasing as a function of t. The resting state is characterized
by an increased density of NN relative to PP connections and a decreased density of PN contributions. In comparison, the attention state is
characterized by an increased density of PP relative to NN connections. The memory state shares features of both the resting and attention states,
showing an increased density of PP relative to NN connections and an increased density of PN connections.
doi:10.1371/journal.pcbi.1003591.g002

Structural Constraints on Human Cognitive Function
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the quantity DnPP{DnNN measures the degree of localized

coupling within either the task-positive or task-negative network,

with positive (negative) values indicating localized coupling within

the task-positive (task-negative) network.

Figure 1d illustrates the relationship between these two quantities

in the resting state (note that this is a condensed representation of

the information shown in Figure 1c). We refer to this representation

as a ‘‘state-space’’ mapping, as it enables us to isolate the structure-

function relationships that characterize each cognitive state.

Comparison across cognitive states reveals that resting, attention,

and memory states occupy distinct regions of this state space,

differing from one another in the types of connection densities that

support strong functional correlations (Figure 2). Strong resting-state

correlations are supported by a decreased density of PN connections

and an increased density of NN relative to PP connections,

reflecting strong localization within the task-negative network and

weak coupling between the task-positive and task-negative networks.

Strong attention-state correlations, in comparison, are supported by

an increased density of PN connections and an increased density of

PP relative to NN connections, reflecting strong localization with

the task-positive network and strong coupling between the task-

positive and task-negative networks. Finally, strong memory-state

correlations share features of both attention and rest, as they are

supported by an increased density of NN relative to PP connections

and an increased density of PN connections.

These findings are consistent with known properties of task-

positive and task-negative networks. The anticorrelation between the

task-positive and task-negative networks manifests here as a

decreased density of PN connections supporting strong resting-state

correlations. Similarly, the known importance of task-positive brain

regions in attention tasks manifests here as an increased density of

PP relative to NN connections supporting strong attention-state

correlations. Lastly, memory-state functional networks are known to

overlap with both resting- and attention-state functional networks

[13]. We similarly find that the types of connection densities that

support strong memory-state FC are similar to those connection

densities that support strong resting- and attention-state FC.

Together, these results show that structural connections

between task-related functional networks distinguish strong

functional correlations measured in different cognitive states.

Individuals Can Be Grouped Based on Similarities in
State-Space Relationships

The state-space description shown in Figure 2 reveals that

cognitive states differ from one another in the structural features

that support strong functional correlations. We investigate whether

Figure 3. Individual variability in state-space relationships. Subject-specific relationships between resting (R), attention (A), and memory (M)
states shown for a single subject (upper row) and for the entire set of subjects (lower row). (a) Subject-specific brain networks can each be described
by a state-space of network couplings, quantified by DnPN versus DnPP{DnNN , that is analogous to the state space shown in Figure 2 for the
representative brain network. Each subject can then be compactly described by a triad of points, one each for resting (circular marker), attention
(square marker), and memory (triangular marker) states, that marks the distribution averages SDnPNT and SDnPP{DnNNT for each cognitive state.
(b) The separation between two states can be quantified by the angular separation Dhab between distribution averages, with fa,bg[fR,A,Mg. (c) To
isolate the angular separation between states, we perform a remapping of the state space in which we represent each individual by a triangle whose
vertices are defined by cyclical permutations of (Dhab,Dhbc). Each vertex is visually indicated by the superposition of markers that denote the two
cognitive states related by Dhab (e.g. DhRA is denoted by the superposition of a circular (R) and square (A) marker). This remapping reveals a high
degree of inter-subject consistency in the relative separation between states, as noted by the clusters of markers of a given type and the highly
overlapping triangles linking these clusters. (d) Subjects can be grouped according to the rank order of angular separations. This method naturally
isolates one primary group of subjects who show the smallest separation between attention and memory states. The subject shown in the upper row
falls into this primary group, as indicated by the proximity of DhAM (superposition of triangular and square markers) to the vertical dotted line
marking Dh~0. The remaining two secondary groups show the smallest separation between rest and memory (DhMR closest to Dh~0) and between
attention and memory (DhRA closest to Dh~0).
doi:10.1371/journal.pcbi.1003591.g003
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the observed separation between cognitive states, as quantified by

differences in such structure-function relationships, is a general

feature of subject-specific networks.

Each subject-specific brain network can be remapped onto a

state-space, analogous to that shown in Figure 2, that compares

subject-specific values DnPN and DnPP{DnNN across resting,

attention, and memory states. To compare across subjects, we

compactly represent each subject by a triad of resting- (R),

attention- (A), and memory-state (M) distribution averages of

DnPN and DnPP{DnNN (Figure 3a). The degree of separation

between cognitive states can then be quantified by the angular

separation Dh between distribution averages.

To isolate inter-subject variations in angular separation, we

perform a remapping of the state space in which we represent each

individual by a triangle whose vertices are defined by cyclical

permutations of (Dhab,Dhbc), where Dhab quantifies the angular

separation between states a and b[fR,A,Mg (Figure 3b). In this

representation, the size of a given triangle captures the degree of

symmetric separation between cognitive states, with smaller

triangles indicating that states are separated from one another

by nearly equal angular distances. Similarly, the rotation of a given

triangle captures the rank-ordering of angular separations.

This remapping, shown in Figure 3b–c, reveals that the degree

of separation between cognitive states is highly consistent across

subjects. This consistency is illustrated by the clustering of points of

the same color, and similarly by the largely overlapping sets of

triangles that link these clusters. In a majority of subjects, attention

and memory occupy similar regions of state space, as quantified by

small values of DhAM and as illustrated by the clustering of green

points near the center vertical axis. In these same subjects, rest

occupies a distinct region of state space far from both attention

and memory, as quantified by large values of DhMR and DhRA and

as illustrated by the clustering of blue and red points near the left

and right vertical axes. The observed organization is not an

artifact of our analysis techniques, as confirmed via comparison

with a null model in which ‘‘task-positive,’’ ‘‘task-negative,’’ and

‘‘other’’ region labels are randomly reassigned (Text S1).

This representation naturally organizes subjects into three

distinct groups based on the relative degree of separation between

cognitive states (Figure 3d). The primary group (66% of subjects)

exhibits less separation between the two task states than between

task and resting states. These separations indicate that similar

structural connections support large changes in both attention and

memory FC, and these structural connections differ from those that

support strong resting-state FC. The remaining subjects comprise

two secondary groups, the first exhibiting the least separation

between resting and memory states (23% of subjects), and the

second exhibiting the least separation between resting and attention

states (11% of subjects). Small separations between resting and task

states indicate that task-dependent changes in FC, measured either

during attention or memory tasks, are supported by similar

structural connections as those that support strong resting-state FC.

Importantly, the primary and secondary groups identified here

are statistically similar to those groups identified from clustering

algorithms (Text S1), confirming that the separation between

cognitive states captures communities of subjects with similar

structure-function relationships. However, the methodology de-

veloped here differs from such data-driven clustering algorithms in

that it provides an intuitive framework for understanding

relationships between cognitive states based on similarities in the

underlying structural features that support these states.

State-Space Relationships Predict Deviations in
Behavioral Performance

The organization of subjects based on the separation between

cognitive states raises two important questions about the potential

relationships between structure, function, and behavior. First, do

primary and secondary groups, as identified by the structure-

function relationships that distinguish between cognitive states,

show absolute differences in attention and memory performance?

Second, is the degree of separation between attention and memory

states, being the property that distinguishes between primary and

secondary groups, indicative of relative differences between

attention and memory performance?

Figure 4. Behavioral performance of primary versus secondary groups. Absolute (Dq{�qqD) and relative (DqA{qM D=(qAzqM )) differences in
performance measures q for attention (A) and memory (M) tasks, where �qq denotes the group average value of q. Performance differences are
reported as means and standard errors for subjects within the primary (gray) and secondary (red) groups. (a) The secondary groups show larger
absolute differences in reaction time (RT) for both attention and memory tasks. (b) The secondary groups show larger relative differences between
attention and memory tasks for both the criterion switch score (CS) and the d-prime (d ’) score.
doi:10.1371/journal.pcbi.1003591.g004

Structural Constraints on Human Cognitive Function
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We address both questions by comparing the behavioral

performance of subjects within the primary versus secondary

groups. We first assess whether the secondary groups, being

outliers in the state-space mapping of structure-function relation-

ships, are also outliers in absolute measures of attention and

memory performance. We then assess whether the secondary

groups, showing larger separations between attention and memory

states in the state-space mapping, also show larger differences in

attention versus memory performance.

Both the attention and memory tasks were designed to measure

subjects’ ability to flexibly switch between decision strategies based

on probabilistic information about the (i) likely position of a visual

cue to be identified during the attention task, or (ii) the likelihood

that a visual cue had been previously presented during a memory

task [22,26].

Based on the design of these tasks, we focus on three relevant

measures of task performance: the criterion switch score (CS), the

d-prime (d ’) score, and the average reaction time (RT). CS

measures strategic flexibility in switching between decision making

strategies, with higher values indicating the ability to more readily

switch strategies. The measure d ’ assesses perceptual (attention

task) or mnemonic (memory task) sensitivity as related to accuracy,

with higher values indicating higher sensitivity and therefore

higher accuracy. Lastly, average RT measures the average time

between the appearance of a stimulus and a subject’s response (via

a button press) to that stimulus. A more detailed discussion of these

performance measures can be found in [26].

We assess absolute performance by computing the deviation

Dq~Dq{�qqD of a given measure q from the group average value �qq.

We find that the secondary groups, being outliers by the measure

of relative separation between cognitive states, are also outliers in

attention and memory RT (Figure 4a). The observed difference

between primary and secondary groups is statistically significant (a

one-tailed t-test of DRTAzDRTM gives t~2:07, p~0:021). We

similarly assess relative performance by computing the relative

difference DqAM~DqA{qM D=(qAzqM ) between a given measure

assessed during attention (qA) versus memory (qM ) tasks. We find

that the secondary groups, exhibiting larger separations between

attention and memory states, also show larger differences between

the values of d ’ and CS measured during attention versus memory

tasks (Figure 4b). The observed difference between primary and

secondary groups is again statistically significant (a one-tailed t-test

of Dd ’AMzDCSAM gives t~1:75, p~0:043). Note that d ’ and CS

have previously been shown to be strongly correlated with one

another [26], such that relative differences in one measure may

drive relative differences in the other. A repeated measures

analysis of variance (ANOVA; with two state-space groupings,

primary and secondary, as categorical measures and with nine

behavioral variables [Dq and DqAM for q[ {RT, CS, d ’}] as

repeated measures) further confirms that the observed differences

between primary and secondary groups are statistically significant,

with a main effect of grouping of F (1)~4:51 and p~0:037 (see

Text S1 for full table of ANOVA results).

These results show that the observed separations between

cognitive states, which arise from differences in the patterns of

structural connectivity that support strong functional correlations,

are linked to both absolute differences in overall performance and

relative differences between attention and memory performance.

Interestingly, the primary and secondary groups differ from one

another in absolute measures of RT but relative measures of d ’
and CS. Given that RT is a more general performance measure,

while d ’ and CS are targeted by the attention and memory tasks

under consideration, this suggests that individual differences in the

rank-ordering of separations between cognitive states are

manifested in general measures of performance, while individual

differences in the degree of separation between two states are

manifested in task-specific measures pertaining to those states.

Discussion

Anatomical connectivity plays an important role in shaping

human cognitive function. To systematically probe relationships

between neural anatomy, function, and behavior, we examine

structural and functional connectivity within and between two

functional networks, task-positive and task-negative, that have

been implicated in a wide range of task-free and task-driven studies

of brain function [7,9,11–13]. We develop an intuitive framework

for understanding how structural connectivity within and between

these networks shapes task-dependent correlations in neural

activity. Within this framework, cognitive states can be character-

ized by patterns of structural connectivity that support strong

functional correlations. When examined across many subjects,

differences between cognitive states are linked to differences in

behavioral task performance.

We find that the relative number of structural connections

between task-positive and task-negative networks differentially

supports strong, task-dependent functional connectivity, suggesting

that task performance modulates interactions within task-based

networks by altering the strength of the strongest interactions. The

finding that strong resting-state FC is supported by increased

coupling within the task-negative network but decreased coupling

between the task-positive and task-negative networks supports the

view of default mode function described in a wide range of studies

[2,5–7]. Similarly, the increased coupling within the task-positive

network during attention and within the task-negative network

during memory supports previously identified task-positive regions

important for attention [7] and task-negative regions important for

memory [12,13]. It has additionally been suggested that the task-

positive network can be decomposed into three subnetworks [10],

and separate examination of structural and functional features

within these subnetworks may further delineate the structure-

function relationships that distinguish between different task states.

The space mapped out by couplings within and between the

task-positive and task-negative networks can be used to assign a

quantitative measure to the separation between resting, attention,

and memory states. When compared across subjects, we find a

high degree of consistency in the relative separation between

states, with a majority of subjects showing small separations

between attention and memory states but large separations in

these two states from rest. This suggests that, within individual

subjects, strong task-dependent changes in FC are supported by

similar patterns of SC.

We do find subjects who deviate from this pattern of

organization, exhibiting large separations between attention and

memory states. Such large separations indicate that changes in the

strength of functional correlations associated with attention versus

memory tasks are supported by different patterns of structural

connectivity. The deviation of these subjects from the majority, as

measured by structural and functional connectivity, has two

important consequences for behavioral performance. First, the

subjects who differ from the majority in relative separation

between cognitive states also differ from the majority in general

measures of behavioral performance. Second, the way in which

these subjects differ from the majority, namely by exhibiting larger

separations between attention and memory states, matches the

way in which they differ from the majority in behavioral

performance, in that they exhibit larger relative differences in

task-specific measures of attention and memory performance.
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These findings suggest that the overall organization of rest and task

states is predictive of general performance, while the degree of

separation between two task states is predictive of relative

differences in performance between the two tasks.

These findings build upon known structure-function relation-

ships in the human brain. Previous work has shown that structural

properties shape global patterns of functional connectivity in a

task-dependent manner [22]. Our results show that these global

changes are modulated by regional changes in connectivity

patterns within and between functional networks. These findings

are compatible with previous studies of default-mode (task-

negative) and fronto-parietal (task-positive) networks, which found

increases in intra-network connectivity during memory tasks

relative to rest, and increases in inter-network connectivity with

memory load [34]. However, our results provide a modified view

of the role of network connectivity: within the set of strongest

connections, relative differences between inter- versus intra-

network connectivity not only distinguish between cognitive states,

but they also predict individual performance differences within

and across tasks. A growing number of recent studies have found

similar links between dynamic changes in functional connectivity

and behavioral performance within single task domains [18–21].

This study builds on these ideas by examining the degree to which

state-dependent changes in connectivity, characterized by a

measure of separation between cognitive states, is predictive of

state-dependent behavior. Together, these findings suggest an

important role for dynamic reconfiguration of brain networks not

only within individual cognitive states, as has been observed

previously, but also across different states.

Methodological Considerations
This work examined couplings within and between the task-

positive and task-negative networks identified in [7]. However, a

wide range of different functional networks have been identified in

the human brain and have been linked to both resting-state and

task-driven neural activity (e.g. [10,35,36]). A more detailed

comparison of such functional networks could provide further

insight into the structure-function relationships that distinguish

between different cognitive states. Furthermore, interactions

within and between these networks have been shown to change

throughout development [37,38] and aging [39], suggesting that

the state-space of relationships found here could exhibit different

characteristics across subjects of different ages.

We demonstrated that patterns of structural connectivity within

and between task-positive and task-negative networks differentially

support task-dependent FC. The observed separation between

cognitive states was measured as a function of the relative number of

structural connections linking a given region pair, but qualitatively

consistent results were observed when structural connectivity was

defined in a binary manner based on the reliable presence of

structural connections across a majority of subjects (Text S1).

Probabilistic tractography algorithms (e.g. [40]), which can identify

crossing or branching fibers that would not be identified by the

deterministic tractography algorithms used here, could improve

estimates of structural connectivity and are therefore expected to

further strengthen these results. Recent advances in computational

platforms (e.g. [41–43]) provide additional model-based approaches

for simulating brain dynamics using subject-specific patterns of

anatomical connectivity. These platforms enable the identification

of spatiotemporal motifs that support cognitive activity, as well as

the biophysical parameters that constrain these motifs. Such

anatomically-informed modeling approaches might help isolate

features of structural brain architecture that shape the state-space

mapping described here, such as transmission delays induced by

long fiber tracts, or signal amplification due to large fiber bundles.

Furthermore, such approaches might identify additional network

motifs that distinguish state-dependent cognitive function. In

combination with subject-specific anatomical constraints, these

methods could help elucidate how individual variability in

anatomical connectivity constrains functional interactions to

ultimately shape behavioral performance.

In assessing state-space relationships, resting, attention, and

memory functional scans were taken to represent individual

cognitive states. However, there is evidence of spatial and

temporal variability within single functional domains [44–47],

suggesting an interplay between multiple cognitive states that each

become more or less active throughout the duration of a given

scan. The framework presented here, when combined with

approaches for assessing nonstationary correlational structure

[48], could help uncover structural features that distinguish

different dynamical patterns of activity observed within a given

functional domain.

Final Remarks
The observation that structure-function relationships between

cognitive states exhibit common state-space features suggests that

these features may reflect general organizational principles of the

brain. The state-space representation may therefore be useful for

defining normative bounds on large-scale patterns of brain

organization. When the features of this space are probed using

suitably large numbers of subjects, regions of this space not

occupied by healthy individuals could be predictive of disrupted

structural or functional connectivity. A further characterization of

the observed structure-function relationships across different

behavioral and genetic measures could potentially be used to

develop objective diagnostic measures of disrupted functionality.

Supporting Information

Text S1 We first describe the experimental methods and

participants of this study. We then describe the construction of

task-positive and task-negative networks, and we highlight the

specific anatomical regions of the brain involved in the task-related

network couplings PP, NN, PN, and f�Og. We then show the

distributions of resting- (FCR), attention- (DFCA), and memory-

state (DFCM ) functional correlations between PP, NN , and PN
region pairs. By thresholding these distributions of FC, we show

the resulting variations DnPP, DnNN , and DnPN in the number

density of structural connections linking strongly-correlated region

pairs. Together, these distributions of Dn were used to define the

state-space mapping of resting, attention, and memory states

shown in Figure 2 of the main text. We show the observed

separation between cognitive states is robust to the specific choices

made in constructing the representative brain network and in

thresholding the resulting distributions of FC. When compared

across subjects, this state-space mapping revealed significant inter-

subject organization in the relative separations between cognitive

states, with subjects naturally organizing into primary and

secondary groups (Figure 3 of the main text). We show that the

observed organization into such groups is not an artifact of our

specific analysis techniques, and we confirm that the primary and

secondary groups are statistically similar to the groups identified

by a clustering algorithm. Lastly, these groups were shown to

exhibit significant differences in behavioral task performance

(Figure 4 of the main text). We describe the full set of ANOVA

results that were used to confirm the statistical significance of these

performance differences.

(PDF)
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